On Gosper’s $\Pi_q$ and Lambert series identities

نویسندگان

چکیده

In an interesting article entitled “Experiments and discoveries in $q$-trigonometry”, R. W. Gosper conjectured few beautiful $\Pi_q$ Lambert series identities. Many people have attempted confirming some of those identities the Gosper’s list, mainly by using $q$-trigonometric this paper we either prove or disprove all list S. Ramanujan’s theta function N. Bailey’s summation formula. process, obtain three new kind

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-crank Type Pdes and Generalized Lambert Series Identities

We show how Rank-Crank type PDEs for higher order Appell functions due to Zwegers may be obtained from a generalized Lambert series identity due to the first author. Special cases are the Rank-Crank PDE due to Atkin and the third author and a PDE for a level 5 Appell function also found by the third author. These two special PDEs are related to generalized Lambert series identities due to Watso...

متن کامل

Algebraic independence of some Lambert series

1] proved that if Y k0 (1 0 z F k) = X k0 "(k)z k ; then "(k) = 0 or 61 for any k 0. Tamura [7] generalized this result by proving the following theorem: Let fR k g k0 be a linear recurrence of positive integers satisfying R k+n = R k+n01 + 1 1 1 + R k (k 0) with n 2 and let P(z) = Y k0 (1 0 z R k) = X k0 "(k)z k : Then, if n is even, f"(k) j k 0g is a nite set; if in addition R k = 2 k (0 k n0...

متن کامل

Little q-Legendre polynomials and irrationality of certain Lambert series

Certain q-analogs hp(1) of the harmonic series, with p = 1/q an integer greater than one, were shown to be irrational by Erdős [9]. In 1991–1992 Peter Borwein [4] [5] used Padé approximation and complex analysis to prove the irrationality of these q-harmonic series and of q-analogs lnp(2) of the natural logarithm of 2. Recently Amdeberhan and Zeilberger [1] used the qEKHAD symbolic package to f...

متن کامل

q–ENGEL SERIES EXPANSIONS AND SLATER’S IDENTITIES

We describe the q–Engel series expansion for Laurent series discovered by John Knopfmacher and use this algorithm to shed new light on partition identities related to two entries from Slater’s list. In our study Al-Salam/Ismail and Santos polynomials play a crucial rôle. Dedicated to the memory of John Knopfmacher 1937–1999

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 2022

ISSN: ['0018-2079']

DOI: https://doi.org/10.32917/h2021044